Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605581

RESUMO

Brassica crops are susceptible to diseases which can be mitigated by breeding for resistance. MAMPs (microbe-associated molecular patterns) are conserved molecules of pathogens that elicit host defences known as pattern-triggered immunity (PTI). Necrosis and Ethylene-inducing peptide 1-like proteins (NLPs) are MAMPs found in a wide range of phytopathogens. We studied the response to BcNEP2, a representative NLP from Botrytis cinerea, and showed that it contributes to disease resistance in Brassica napus. To map regions conferring NLP response, we used the production of reactive oxygen species (ROS) induced during PTI across a population of diverse B. napus accessions for associative transcriptomics (AT), and bulk segregant analysis (BSA) on DNA pools created from a cross of NLP-responsive and non-responsive lines. In silico mapping with AT identified two peaks for NLP responsiveness on chromosomes A04 and C05 whereas the BSA identified one peak on A04. BSA delimited the region for NLP-responsiveness to 3 Mbp, containing ~245 genes on the Darmor-bzh reference genome and four co-segregating KASP markers were identified. The same pipeline with the ZS11 genome confirmed the highest-associated region on chromosome A04. Comparative BLAST analysis revealed unannotated clusters of receptor-like protein (RLP) homologues on ZS11 chromosome A04. However, no specific RLP homologue conferring NLP response could be identified. Our results also suggest that BR-SIGNALLING KINASE1 may be involved with modulating the NLP response. Overall, we demonstrate that responsiveness to NLP contributes to disease resistance in B. napus and define the associated genomic location. These results can have practical application in crop improvement.

2.
Theor Appl Genet ; 137(3): 65, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430276

RESUMO

KEY MESSAGE: Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.


Assuntos
Brassica napus , Resistência à Doença , Resistência à Doença/genética , Brassica napus/genética , Brassica napus/microbiologia , Melhoramento Vegetal
3.
Photochem Photobiol Sci ; 22(10): 2341-2356, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37505444

RESUMO

UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.


Assuntos
Arabidopsis , Brassica napus , Mariposas , Animais , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Brassica napus/genética , Herbivoria , Lignina , Mariposas/fisiologia , Plantas
4.
Theor Appl Genet ; 136(4): 71, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952022

RESUMO

KEY MESSAGE: Quantitative disease resistance (QDR) controls the association of the light leaf spot pathogen with Brassica napus; four QDR loci that were in linkage disequilibrium and eight gene expression markers were identified. Quantitative disease resistance (QDR) can provide durable control of pathogens in crops in contrast to resistance (R) gene-mediated resistance which can break down due to pathogen evolution. QDR is therefore a desirable trait in crop improvement, but little is known about the causative genes, and so it is difficult to incorporate into breeding programmes. Light leaf spot, caused by Pyrenopeziza brassicae, is an important disease of oilseed rape (canola, Brassica napus). To identify new QDR gene loci, we used a high-throughput screening pathosystem with P. brassicae on 195 lines of B. napus combined with an association transcriptomics platform. We show that all resistance against P. brassicae was associated with QDR and not R gene-mediated. We used genome-wide association analysis with an improved B. napus population structure to reveal four gene loci significantly (P = 0.0001) associated with QDR in regions showing linkage disequilibrium. On chromosome A09, enhanced resistance was associated with heterozygosity for a cytochrome P450 gene co-localising with a previously described locus for seed glucosinolate content. In addition, eight significant gene expression markers with a false discovery rate of 0.001 were associated with QDR against P. brassicae. For seven of these, expression was positively correlated with resistance, whereas for one, a HXXXD-type acyl-transferase, negative correlation indicated a potential susceptibility gene. The study identifies novel QDR loci for susceptibility and resistance, including novel cryptic QDR genes associated with heterozygosity, that will inform future crop improvement.


Assuntos
Brassica napus , Brassica napus/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal
5.
Plant Pathol ; 71(9): 2004-2016, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36605780

RESUMO

Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species. Arabidopsis can recognize NLPs by the pattern recognition receptor AtRLP23 and its co-receptors SOBIR1, BAK1, and BKK1, leading to induction of defence responses including the production of reactive oxygen species (ROS) and elevation of intracellular [Ca2+]. However, little is known about NLP perception in Brassica crop species. Within 12 diverse accessions for each of six Brassica crop species, we demonstrate variation in response to Botrytis cinerea NLP BcNEP2, with Brassica oleracea (CC genome) being nonresponsive and only two Brassica napus cultivars responding to BcNEP2. Peptides derived from four fungal pathogens of these crop species elicited responses similar to BcNEP2 in B. napus and Arabidopsis. Induction of ROS by NLP peptides was strongly reduced in Atrlp23, Atsobir1 and Atbak1-5 Atbkk1-1 mutants, confirming that recognition of Brassica pathogen NLPs occurs in a similar manner to that of HaNLP3 from Hyaloperonospora arabidopsidis in Arabidopsis. In silico analysis of the genomes of two B. napus accessions showed similar presence of homologues for AtBAK1, AtBKK1 and AtSOBIR1 but variation in the organization of AtRLP23 homologues. We could not detect a strong correlation between the ability to respond to NLP peptides and resistance to B. cinerea.

6.
Trends Plant Sci ; 26(10): 1006-1013, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34175219

RESUMO

Loss of Mildew Resistance Locus O (MLO) in barley confers durable resistance to powdery mildew fungi, which has led to its wide deployment in agriculture. Although MLO is a susceptibility factor, it has become nearly synonymous with powdery mildew resistance. However, MLO has been recently implicated in colonization by arbuscular mycorrhizal fungi and a fungal endophyte, confirming its importance for biotrophic interactions and in promoting symbiosis. Other MLO proteins are involved in essential sensory processes, particularly fertilization and thigmotropism. We propose external stimulus perception as a common theme in these interactions and consider a unified biochemical role, potentially relating to reactive oxygen species (ROS) and calcium regulation, for MLOs across tissues and processes.


Assuntos
Hordeum , Micorrizas , Resistência à Doença/genética , Doenças das Plantas , Proteínas de Plantas/genética
7.
Plant Physiol ; 183(2): 468-482, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184345

RESUMO

Disease resistance genes encoding nucleotide-binding and leucine-rich repeat (NLR) intracellular immune receptor proteins detect pathogens by the presence of pathogen effectors. Plant genomes typically contain hundreds of NLR-encoding genes. The availability of the hexaploid wheat (Triticum aestivum) cultivar Chinese Spring reference genome allows a detailed study of its NLR complement. However, low NLR expression and high intrafamily sequence homology hinder their accurate annotation. Here, we developed NLR-Annotator, a software tool for in silico NLR identification independent of transcript support. Although developed for wheat, we demonstrate the universal applicability of NLR-Annotator across diverse plant taxa. We applied our tool to wheat and combined it with a transcript-validated subset of genes from the reference gene annotation to characterize the structure, phylogeny, and expression profile of the NLR gene family. We detected 3,400 full-length NLR loci, of which 1,560 were confirmed as expressed genes with intact open reading frames. NLRs with integrated domains mostly group in specific subclades. Members of another subclade predominantly locate in close physical proximity to NLRs carrying integrated domains, suggesting a paired helper function. Most NLRs (88%) display low basal expression (in the lower 10 percentile of transcripts). In young leaves subjected to biotic stress, we found up-regulation of 266 of the NLRs To illustrate the utility of our tool for the positional cloning of resistance genes, we estimated the number of NLR genes within the intervals of mapped rust resistance genes. Our study will support the identification of functional resistance genes in wheat to accelerate the breeding and engineering of disease-resistant varieties.


Assuntos
Software , Resistência à Doença , Genoma de Planta/genética , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/metabolismo , Triticum/microbiologia
8.
New Phytol ; 227(2): 343-351, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32012282

RESUMO

Loss of barley Mildew Resistance Locus O (MLO) is known to confer durable and robust resistance to powdery mildew (Blumeria graminis), a biotrophic fungal leaf pathogen. Based on the increased expression of MLO in mycorrhizal roots and its presence in a clade of the MLO family that is specific to mycorrhizal-host species, we investigated the potential role of MLO in arbuscular mycorrhizal interactions. Using mutants from barley (Hordeum vulgare), wheat (Triticum aestivum), and Medicago truncatula, we demonstrate a role for MLO in colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Early mycorrhizal colonization was reduced in mlo mutants of barley, wheat, and M. truncatula, and this was accompanied by a pronounced decrease in the expression of many of the key genes required for intracellular accommodation of arbuscular mycorrhizal fungi. These findings show that clade IV MLOs are involved in the establishment of symbiotic associations with beneficial fungi, a role that has been appropriated by powdery mildew.


Assuntos
Hordeum , Magnoliopsida , Micorrizas , Ascomicetos , Fungos , Hordeum/genética , Doenças das Plantas , Proteínas de Plantas/genética
9.
PLoS One ; 14(7): e0219042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31314759

RESUMO

Wide crosses between genetically diverged parents may reveal novel loci for crop improvement that are not apparent in crosses between elite cultivars. The landrace Chevallier was a noted malting barley first grown in 1820. To identify potentially novel alleles for agronomic traits, Chevallier was crossed with the modern malting cultivar NFC Tipple generating two genetically diverse recombinant inbred line populations. Genetic maps were produced using genotyping-by-sequencing and 384-SNP genotyping, and the populations were phenotyped for agronomic traits to allow the identification of quantitative trait loci (QTL). Within the semi-dwarf 1 (sdw1) region on chromosome 3H Chevallier conferred increased plant height and reduced tiller number, with QTL for these traits explaining 79.4% and 35.2% of the phenotypic variance observed, respectively. Chevallier was also associated with powdery mildew susceptibility, with a QTL on 1H accounting for up to 19.1% of the variance and resistance at this locus most likely resulting from an Mla variant from Tipple. Two novel QTL for physiological leaf spotting were identified on 3H and 7H, explaining up to 17.1% of the variance and with the Chevallier allele reducing symptom severity on 7H. Preliminary micromalting analysis was also undertaken to compare the malting characteristics of Chevallier and Tipple. Chevallier malt contained significantly lower levels of both α-amylase and wort ß-glucan than Tipple malt, however no significant differences were observed for the remaining malting parameters measured. This suggests that the most obvious improvements in barley since the introduction of Chevallier are for agronomic traits such as height, yield and lodging resistance rather than for malting characteristics. Overall, our results demonstrate that this wide cross between Chevallier and Tipple may provide a source of novel QTL for barley breeding.


Assuntos
Hordeum/genética , Bebidas Alcoólicas , Alelos , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Cruzamentos Genéticos , Resistência à Doença/genética , Genes de Plantas , Genótipo , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
Methods Mol Biol ; 1578: 325-335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220438

RESUMO

Quantitative disease resistance (QDR) based on PAMP-triggered immunity (PTI) could be durable and effective against many pathogens (broad spectrum). Development of methods to evaluate PTI responses in crops could therefore accelerate breeding for durable QDR. Most PTI-studies involved model plants such as Arabidopsis and Nicotiana benthamiana or cell cultures, and cannot be directly applied to diverse germplasm of crop plants.We developed methods to measure PTI in Brassica crop species (Lloyd et al., Mol Plant Microbe Interact 27:286-295, 2014) which we have elaborated and expanded here to enable their use for screening and evaluating germplasm for potential QDR in breeding programs.


Assuntos
Brassica/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
New Phytol ; 206(2): 606-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25760815

RESUMO

Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Resistência à Doença , Fator Tu de Elongação de Peptídeos/metabolismo , Doenças das Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Triticum/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioensaio , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Oryza/genética , Fator Tu de Elongação de Peptídeos/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Triticum/genética , Triticum/microbiologia
12.
BMC Plant Biol ; 14: 10, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24397376

RESUMO

BACKGROUND: Rust diseases are of major importance in wheat production worldwide. With the constant evolution of new rust strains and their adaptation to higher temperatures, consistent and durable disease resistance is a key challenge. Environmental conditions affect resistance gene performance, but the basis for this is poorly understood. RESULTS: Here we show that a change in day temperature affects wheat resistance to Puccinia striiformis f. sp tritici (Pst), the causal agent of yellow (or stripe) rust. Using adult plants of near-isogenic lines UC1041 +/- Yr36, there was no significant difference between Pst percentage uredia coverage in plants grown at day temperatures of 18°C or 25°C in adult UC1041 + Yr36 plants. However, when plants were transferred to the lower day temperature at the time of Pst inoculation, infection increased up to two fold. Interestingly, this response was independent of Yr36, which has previously been reported as a temperature-responsive resistance gene as Pst development in adult UC1041 -Yr36 plants was similarly affected by the plants experiencing a temperature reduction. In addition, UC1041 -Yr36 plants grown at the lower temperature then transferred to the higher temperature were effectively resistant and a temperature change in either direction was shown to affect Pst development up to 8 days prior to inoculation. Results for seedlings were similar, but more variable compared to adult plants. Enhanced resistance to Pst was observed in seedlings of UC1041 and the cultivar Shamrock when transferred to the higher temperature. Resistance was not affected in seedlings of cultivar Solstice by a temperature change in either direction. CONCLUSIONS: Yr36 is effective at 18°C, refining the lower range of temperature at which resistance against Pst is conferred compared to previous studies. Results reveal previously uncharacterised defence temperature sensitivity in the UC1041 background which is caused by a change in temperature and independently of Yr36. This novel phenotype is present in some cultivars but absent in others, suggesting that Pst defence may be more stable in some cultivars than others when plants are exposed to varying temperatures.


Assuntos
Triticum/microbiologia , Triticum/fisiologia , Basidiomycota/patogenicidade , Genes de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Temperatura , Triticum/genética
13.
Mol Plant Microbe Interact ; 27(3): 286-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24156768

RESUMO

The first layer of active defense in plants is based on the perception of pathogen-associated molecular patterns (PAMPs) leading to PAMP-triggered immunity (PTI). PTI is increasingly being investigated in crop plants, where it may have potential to provide durable disease resistance in the field. Limiting this work, however, is an absence of reliable bioassays to investigate PAMP responses in some species. Here, we present a series of methods to investigate PTI in Brassica napus. The assays allow measuring early responses such as the oxidative burst, mitogen-activated protein kinase phosphorylation, and PAMP-induced marker gene expression. Illumina-based RNA sequencing analysis produced a genome-wide survey of transcriptional changes upon PAMP treatment seen in both the A and C genomes of the allotetraploid B. napus. Later responses characterized include callose deposition and lignification at the cell wall, seedling growth inhibition, and PAMP-induced resistance to Pseudomonas syringae and Botrytis cinerea. Furthermore, using these assays, we demonstrated substantial variation in PAMP responses within a collection of diverse B. napus cultivars. The assays reported here could have widespread application in B. napus breeding and mapping programs to improve selection for broad-spectrum disease resistance.


Assuntos
Brassica napus/imunologia , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Sequência de Aminoácidos , Botrytis/fisiologia , Brassica napus/genética , Brassica napus/fisiologia , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Peptídeos/genética , Fosforilação , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas syringae/fisiologia , RNA de Plantas/química , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Plântula/genética , Plântula/imunologia , Plântula/fisiologia , Análise de Sequência de RNA , Especificidade da Espécie
14.
Trends Genet ; 29(4): 233-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23153595

RESUMO

The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant-pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Agricultura , Cruzamento , Engenharia Genética
15.
PLoS One ; 6(10): e25709, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998682

RESUMO

BACKGROUND: RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions. CONCLUSIONS/SIGNIFICANCE: Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control.


Assuntos
Ração Animal , Afídeos/genética , Arabidopsis/genética , Técnicas de Silenciamento de Genes/métodos , Interferência de RNA , RNA de Cadeia Dupla/genética , Animais , Afídeos/fisiologia , Estudos de Viabilidade , Fertilidade/genética , Genes de Insetos/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Transcriptoma
16.
Science ; 330(6010): 1543-6, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21148392

RESUMO

Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.


Assuntos
Ascomicetos/genética , Deleção de Genes , Genes Fúngicos , Genoma Fúngico , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Adaptação Fisiológica , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Metabolismo dos Carboidratos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Enzimas/genética , Enzimas/metabolismo , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/genética , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Retroelementos , Análise de Sequência de DNA , Especificidade da Espécie
17.
Plant Cell ; 22(9): 3130-41, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20884801

RESUMO

Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.


Assuntos
Ascomicetos/genética , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Interferência de RNA , Triticum/microbiologia , Regulação Fúngica da Expressão Gênica , Hordeum/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , RNA Antissenso/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Fúngico/genética , RNA de Plantas/metabolismo , Triticum/genética
18.
PLoS One ; 4(10): e7463, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19829700

RESUMO

Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR(k1) powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR(k1) gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Elementos Nucleotídeos Longos e Dispersos/genética , Plantas/microbiologia , Retroelementos/genética , Ascomicetos/fisiologia , Evolução Molecular , Fungos/genética , Fungos/metabolismo , Biblioteca Gênica , Genes Fúngicos , Genoma Fúngico , Modelos Genéticos , Filogenia , Doenças das Plantas/microbiologia , Virulência
19.
Fungal Genet Biol ; 45(3): 243-52, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18036855

RESUMO

Powdery mildew fungi are parasites that cause disease on a wide range of important crops. Plant resistance (R) genes, which induce host defences against powdery mildews, encode proteins that recognise avirulence (AVR) molecules from the parasite in a gene-for-gene manner. To gain insight into how virulence evolves in Blumeria graminis f.sp. hordei, associations between segregating AVR genes were established. As a prerequisite to the isolation of AVR genes, two loci were selected for further analysis. AVR(a22) is located in a tightly linked cluster comprising AVR(a10) and AVR(k1) as well as up to five other AVR genes. The ratio between physical and genetic distance in the cluster ranged between 0.7 and 35 kB/cM. The AVR(a22) locus was delimited by the previously isolated gene AVR(a10) and two cleaved amplified polymorphic sequence (CAPS) markers, 19H12R and 74E9L. By contrast, AVR(a12) was not linked to other AVR genes in two crosses. Bulk segregant analysis of over 100,000 AFLP fragments yielded two markers, ETAMTG-285 and PAAMACT-473, mapping 10 and 2cM from AVR(a12), respectively, thus delimiting AVR(a12) on one side. All markers obtained for AVR(a12) mapped proximal to it, indicating that the gene is located at the end of a chromosome. Three more AVR(a10) paralogues were identified at the locus interspersed among genes for metabolic enzymes and abundant repetitive elements, especially those homologous to the CgT1 class of retrotransposons. The flanking and close markers obtained will facilitate the isolation of AVR(a22) and AVR(a12) and provide useful tools for studies of the evolution of powdery mildew fungi in agriculture and nature.


Assuntos
Ascomicetos/genética , Mapeamento Cromossômico/métodos , Genes Fúngicos/genética , Sequência de Aminoácidos , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Elementos de DNA Transponíveis/genética , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo Genético , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Telômero/genética , Virulência/genética
20.
Plant Cell ; 18(9): 2402-14, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16905653

RESUMO

Powdery mildews, obligate biotrophic fungal parasites on a wide range of important crops, can be controlled by plant resistance (R) genes, but these are rapidly overcome by parasite mutants evading recognition. It is unknown how this rapid evolution occurs without apparent loss of parasite fitness. R proteins recognize avirulence (AVR) molecules from parasites in a gene-for-gene manner and trigger defense responses. We identify AVR(a10) and AVR(k1) of barley powdery mildew fungus, Blumeria graminis f sp hordei (Bgh), and show that they induce both cell death and inaccessibility when transiently expressed in Mla10 and Mlk1 barley (Hordeum vulgare) varieties, respectively. In contrast with other reported fungal AVR genes, AVR(a10) and AVR(k1) encode proteins that lack secretion signal peptides and enhance infection success on susceptible host plant cells. AVR(a10) and AVR(k1) belong to a large family with >30 paralogues in the genome of Bgh, and homologous sequences are present in other formae speciales of the fungus infecting other grasses. Our findings imply that the mildew fungus has a repertoire of AVR genes, which may function as effectors and contribute to parasite virulence. Multiple copies of related but distinct AVR effector paralogues might enable populations of Bgh to rapidly overcome host R genes while maintaining virulence.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/fisiologia , Hordeum/microbiologia , Fatores de Virulência/fisiologia , Sequência de Aminoácidos , Apoptose/fisiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Clonagem Molecular , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dosagem de Genes , Hordeum/genética , Imunidade Inata/genética , Modelos Biológicos , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Alinhamento de Sequência , Fatores de Virulência/química , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...